
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretation for IEEE Std 1003.5™ (1999 Edition) - IEEE Stan-
dard for Information Technology--POSIX® Ada Language Interfaces--PART 1: 
Binding for System Application Program Interface

Copyright © 2005 by the Institute of Electrical and Electronics Engineers, Inc., 3 Park 
Avenue, New York, New York 10016-5997 USA. All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not 
constitute an alteration to the original standard. In addition, interpretations are not 
intended to supply consulting information. Permission is hereby granted to download 
and print one copy of this document. Individuals seeking permission to reproduce and/
or distribute this document in its entirety or portions of this document must contact the 
IEEE Standards Department for the appropriate license. Use of the information contained 
in this document is at your own risk.

IEEE Standards Department, Copyrights and Permissions, 445 Hoes Lane, Piscataway, 
New Jersey 08855-1331, USA

December 2006

Interpretation Request #1 
Topic: Open_And_Map_Shared_Memory and Open_Or_Create_And_Map_Shared_Mem-
ory functions Relevant Clauses: 12.5.1.2

This standard states that these functions are equivalent to a sequence of calls. This in-
cludes a call to Open_Shared_Memory, with the Mode parameter set as follows:

“If the value of Protection is set to Allow_Write, Mode is Read_Write; otherwise Mode is 
Read_Only.”

However, Protection is a /set/ of options and may be set to “Allow_Write + Allow_Read”. 
By following the standard literally, this would lead to a Mode of Read_Only, which was 
clearly not what was intended.

This interpretation would make these functions unusable for opening or creating a 
shared memory mapping with both read and write access, which this user supposes is 
the most commonly desired mode of operation.

However, this user sees two possible interpretations that would make the functions us-
able:

1. The quoted sentence above should be interpreted as “If the value of Protection /in-
cludes/ Allow_Write, Mode is Read_Write; otherwise Mode is Read_Only.”

2. As it is not specified exactly how the Protection parameter should be used in the sub-



445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

sequent call to Map_Memory, a possible interpretation would be that one should always 
add the Allow_Read option in the call to Map_Memory.

In this user’s opinion, number #2 (above) is counterintuitive, as one would expect the 
protection parameters passed on to Map_Memory being the same as those initially sub-
mitted. And besides that, this would decrease the flexibility by not allowing the user to 
create a write-only mapping.

To illustrate the problematics, a simple example will follow. The example consists of two 
Ada functions which communicate via a shared memory area. With a common imple-
mentation of the IEEE 1003.5 (Florist), the problem arises in the form of a Storage_Error 
when trying to access the shared area:

---[shmserv.adb]--- with POSIX_Generic_Shared_Memory, POSIX_IO, POSIX_Memo-
ry_Mapping, POSIX.Permissions; with Ada.Text_IO; procedure Shmserv is type Data is 
record I : Integer; J : Integer; end record; package GSM is new Posix_Generic_Shared_
Memory(Data); Descriptor : POSIX_IO.File_Descriptor; Data_Access : GSM.Shared_Ac-
cess; begin Descriptor := GSM.Open_Or_Create_And_Map_Shared_Memory (“/foo”, 
POSIX_Memory_Mapping.Allow_Write, POSIX.Permissions.Access_Permission_Set); 
Data_Access := GSM.Access_Shared_Memory(Descriptor); Data_Access.I := 1; loop 
Ada.Text_IO.Put_Line(Integer’Image(Data_Access.I)); delay(0.5); end loop; end Shm-
serv; ---[end shmserv.adb]---

---[shmcli.adb]--- with POSIX_Generic_Shared_Memory, POSIX_IO, POSIX_Memo-
ry_Mapping; procedure Shmcli is type Data is record I : Integer; J : Integer; end record; 
package GSM is new Posix_Generic_Shared_Memory(Data); Descriptor : POSIX_IO.
File_Descriptor; Data_Access : GSM.Shared_Access; begin Descriptor := GSM.Open_
And_Map_Shared_Memory (“/foo”, POSIX_Memory_Mapping.Allow_Write); Data_Access 
:= GSM.Access_Shared_Memory(Descriptor); loop Data_Access.I := Data_Access.I + 1; 
delay(1.0); end loop; end Shmcli; ---[end shmcli.adb]---

The current Florist implementation of Open_And_Map_Shared_Memory is defined as fol-
lows:

---- function Open_And_Map_Shared_Memory (Name : POSIX.POSIX_String; Protection 
: POSIX.Memory_Mapping.Protection_Options; Masked_Signals : POSIX.Signal_Masking 
:= POSIX.RTS_Signals) return POSIX.IO.File_Descriptor is FD : POSIX.IO.File_Descrip-
tor; Mode : POSIX.IO.File_Mode; begin if Protection = POSIX.Memory_Mapping.Al-
low_Write then Mode := POSIX.IO.Read_Write; else Mode := POSIX.IO.Read_Only; end 
if; Begin_Critical_Section; begin FD := POSIX.Shared_Memory_Objects.Open_Shared_
Memory (Name, Mode, POSIX.IO.Empty_Set, Masked_Signals); POSIX.IO.Truncate_File 
(FD, Length); Insert_Node (FD, POSIX.Memory_Mapping.Map_Memory (System.Stor-
age_Elements.Storage_Offset (Length), Protection, POSIX.Memory_Mapping.Map_
Shared, FD, 0)); End_Critical_Section; exception when others => End_Critical_Section; 
raise; end; return FD; end Open_And_Map_Shared_Memory; ----



445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 3

Interpretation Response 
There is a problem with the wording of 12.5.1.2, and that your suggested intepretation 
(item 1 above) is correct. That is where the standard says:

“If the value of Protection is set to Allow_Write, Mode is Read_Write; otherwise Mode is 
Read_Only to convey the intended meaning it should instead say

“If the value of Protection *includes* Allow_Write, Mode is Read_Write; otherwise Mode 
is Read_Only”.

Accordingly, it seems the “=” test in the Florist implementation code below should be 
changed to “>=”.

if Protection = POSIX.Memory_Mapping.Allow_Write then Mode := POSIX.IO.Read_
Write; else Mode := POSIX.IO.Read_Only; end if;


