

SCALING AUTOMOTIVE ETHERNET Reconfigurability, Performance and the Future of Software-defined Vehicles

Abe Alkhateeb (Stellantis), Karel Heurtefeux (Infineon), Trista Lin (Stellantis), Pierre Laclau (Stellantis)

IEEE SA Ethernet & IP Technology Day 2024

AUTOMOTIVE SOFTWARE EVOLUTION

Cloud % of vehicles recalled due % of Electronics system/car cost to electronic defects Apps 15% 22% 35% 50% 5% 10% 5% 15% 50% Car.OS (Multi OS+MW) 1970 1980 1990 2000 2010 2030 (forecast) 2011 2015 2019

(R. N. Charette, "How software is eating the car", IEEE Spectrum, 2021)

LEGACY EE ARCHITECTURES

STLA Brain

Hardware-defined Off the lot = Depreciation

Software-defined Update = Appreciation

Introduction

Performan

НW

Reconfigurability

onclusion & challenges

2

AUTOMOTIVE SOFTWARE EVOLUTION - RECONFIGURABILITY

STLA Brain

Reconfigurability:

- Scalability: Able to adapt the global software for different car platform. (complexity management)
- **Modularity:** Able to independently create, modify, swap or remove software modules via OTA updates or HW swapping without affecting the overall system integrity. (vehicle personalization)
- **Reusability:** Able to reuse software components and repurpose ECUs and integrate them into new vehicle projects.

Performance:

- Latency: Minimize the network delay between request and response.
- Throughput: Maximize the amount of data exchanged within a given time frame.
- **CPU load:** Efficiently manage and offload CPU usage to prevent bottlenecks and ensure a better user experience.

Reconfigurability

Performance

REQUIREMENTS AND ASSUMPTIONS

Why routing performance maters?

Routing latency requirements: < 1ms

 \rightarrow what is the minimum routing performance required for the worst-case traffic estimation?

Model Assumptions:

- Mixed traffic: 5000 frames per second (FPS) per CAN interfaces
- 3 scenarios:
 - Limited CAN connectivity: 8x CAN I/Fs -> 40K fps ٠
 - Medium CAN connectivity: 12x CAN I/Fs -> 60K fps ٠
 - Important CAN connectivity: 16x CAN I/Fs -> 80K fps •
- Random arrival time for the incoming traffic
- Service/Routing time: deterministic
 - CPU based: 16.5
 µs (CAN2ETH@500MHz on Aurix TC4D CPU)
 - HW based: 5µs (CAN2ETH on Aurix TC4D Routing accelerator)

ontroller

SIMPLE QUEUEING MODEL

Kendall's notation

Matlab modeling

RESULTS WITH THE 3 SCENARIOS

Service/Routing time: 5µs

Service/Routing time: 16.5µs

Introduction

Worse Latency \approx 1.8ms

RESULTS WITH THE 3 SCENARIOS

High throughput (80k fps)

Service/Routing time: 5µs

AURIX MICROCONTROLLER TC4X: HW ACCELERATION OF CAN -> CAN & ETHERNET ROUTING

AURIX MICROCONTROLLER TC4X: HW ACCELERATION OF ETH -> CAN ROUTING

ETH → CAN

ETH → CAN

ETH → CAN

SUMMARY

- 1. Minimum routing latency ≠ Average routing latency ≠ Worse case latency
 - Routing 1 frame in 15µs ≠ Routing X frames in average in 15µs

Infineon STELLANTIS

2. Traffic matters:

- Routing speed on the MCU should be higher than the incoming throughput
- Traffic from multiple interfaces -> random arrival time
- 3. To have a reduced jitter: Routing speed >> Incoming throughput

Reconfigurability

Performance

IMPORTANCE OF RECONFIGURABILITY

AD Autonomous Driving Zone (UC) Sensor	Application PE B CCS CO Connectivity Body CCskpit & CO Connectivity & OTA Middleware OS Safety OS HPC (Central SOC) EE Architecture Actuator				
Key requirement	Description	EV	ADAS	Connected service	Customization
TA updates	Add new feature Improve performance Fix issues	Battery		Regional	Multi-brand configuration
emote onfiguration	Activate services Adapt configuration for vehicle models or regions	management Modular powertrain	Scalable ADAS platform	adaptation Enhance connectivity and information	Personalized settings
lodular oftware	Add/remove/update/swap a software component without impacting the entire system				In-vehicle commerce

R

IV S(

Reconfigurability

Proposal

Dynamic reconfiguration system for all applications

Problem : Network configuration: Worst-case scenarios. Not actual usage.Runtime : Reconfiguration for car brands and regions. Customization.Reusability : Carryover features and hardware

Core concept – Observe service lifecycle patterns

Solution – Cluster vehicle states

Results – Feasible and performant

Full research paper: P. Laclau, S. Bonnet, B. Ducourthial, X. Li and T. Lin, "Predictive Network Configuration with Hierarchical Spectral Clustering for Software Defined Vehicles," *IEEE 97th Vehicular Technology Conference (VTC2023-Spring)*, Florence, Italy, 2023, pp. 1-5

Onboard

AXIL – Automotive eXperience Integrity Level

Controllability		Failure Severity Quality of Experience (QoE)			ASIL
Ease of	Exposure				
Substitution		Q1 - Frustrating	Q2 - Bothering	Q3 - Acceptable	Q4 - Pleasant
	E1 - LOW	QM	QM	QM	QM
	E2 - Medium	QM	QM	OM	QM
51- Easy	E3 - High	GM	СМ	OM	A
	E4 - Constant	QM	QM	A.	В
	E1 - LOW	QM	СM	QM	QM
	E2 - Medium	QM	QM	QM	Α.
52 - Medium	E3 - High	QM	QM	A.	B
	E4 - Constant	OM	À.	В	C
	E1 - Low	OM	QM	QM	А
-	E2 - Medium	DM	QM	A	в
ss - Dimcuit	E3 - High	QM	Α.	В	C.
	E4 - Constant	Α.	В	с	D

New metric to evaluate each feature's contribution to onboard UX. Can be dynamically personalized.

Core concept – Apps with degraded modes → Runtime modes have a UX priority (AXIL) → What if too many apps are requested?

Solution – Fast onboard algorithm to: → Activate the best UX applications → Stay within onboard resources

Physical Test Bench – 4 ECUs dynamically allocating service requests

 Full paper (core concept): P. Laclau, S. Bonnet, B. Ducourthial, X. Li and T. Lin, "Enhancing Automotive User Experience with Dynamic Service Orchestration for Software Defined Vehicles," to be published in

 IEEE Transactions on Intelligent Transportation Systems, 2024.
 Full paper (validation): P. Laclau, S. Bonnet, B. Ducourthial, T. Lin and X. Li, "Experimental Validation of User Experience-focused Dynamic

 Onboard Service Orchestration for Software Defined Vehicles," IEEE 27th International Conference on Intelligent Transportation Systems (ITSC), Edmonton, Canada, 2024
 18

Introduction	Reconfigurability	Conclusion & challenges
	ince on in Surability	

Solution Type	Performance	Reconfigurability	Cost	Complexity	Use cases
Hardware-based	High	Low	High	High	Critical systems
Software-based	Moderate	High	Low	Low	Apps requiring frequent updates & configurations
Hybrid	Balanced	Moderate	Medium	Medium	Features needing both performance & flexibility

Hybrid solution requires an optimized design.

- Knowledge on both hardware/software

- Knowledge on end-to-end feature deployment

Automotive trends and automotive use cases Performance needs in in-vehicle network Reconfigurability needs Tradeoff between performance and reconfigurability

STELLANTIS

Reactivity of remote features

Vehicle (re)configuration and software traceability (UN R156)

Network Configuration

- Performance
- In-car marketplace
- Cybersecurity
- Safety

Diagnosticability and Repairability

New testing concept to improve software maturity (digital twin, shadow mode)

Standardization and Reference Design

Ethernet is an important enabler !

(Source: Eclipse SDV - Who are we?, D. Krippner, ETAS, EclipseCon2022)